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• Introduction to Decision Diagrams

• TSP

– special case of single machine scheduling problem

– embed DD relaxations in constraint programming solver

– improve DD bound with Lagrangian relaxation and Additive Bounding

• Vehicle Routing

– apply ‘column elimination’ to iteratively strengthen relaxed DD

– combine with linear programming solver

Overview
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Decision Diagrams
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• Graphical representation of 
Boolean functions
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Decision Diagrams
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• Graphical representation of 
Boolean functions
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• BDD: binary decision diagram
• MDD: multi-valued decision diagram



Decision Diagrams: Optimization View
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• Graphical representation of 
Boolean functions
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• Optimization perspective:
- literals → variables
- arcs → assignments
- paths → solutions



Decision Diagrams: Optimization View
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Decision Diagrams: Optimization View
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Decision Diagrams: Optimization View
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Decision Diagrams: Optimization View
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max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
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• Maximizing a linear (or separable) function:
• Arc lengths: contribution to the objective
• Longest path: optimal solution

(can also handle nonlinear functions)
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Decision Diagrams: Optimization View
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Compiling DDs: Top-down or iterative refinement
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Compiling DDs: Top-down or iterative refinement
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Compiling DDs: Top-down or iterative refinement
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Compiling DDs: Top-down or Iterative Refinement
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• Exponential size is handled by explicitly limiting 

the size (e.g., the width) of the diagram

• Non-equivalent nodes are merged

– top-down compilation: need node merging rule

– iterative refinement: stop when width is reached

• Requirement: no solution is lost

– over-approximation of the solution space

– provides discrete relaxation

– strength is controlled by the maximum width

Relaxed Decision Diagrams: Polynomial Size
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[Andersen, Hadzic, Hooker, Tiedemann, CP 2007]
[Bergman, Cire, vH, Hooker, CPAIOR 2011, IJOC 2016]



• Constraint Programming

– DD-based constraint propagation 

• Combinatorial optimization

– MISP, MAX-CUT, graph coloring,…

• Scheduling, routing, planning

– machine scheduling, TSPTW, SOP, AI 

robotic planning,…

• Decomposition and embedding in MIP

– nonlinear objective functions, cutting 

planes, column generation,… 

Categories of Successful Applications
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[Bergman&Cire 2018] [Lozano et al. 2020-2022]

[Morrison et al. IJOC 2016] [Kowalczyk & Leus IJOC 2018]

[Tjandraatmadja&vH, 2019, 2021] [Davarnia&vH, MP 2021]

[Cire&vH, OR2013], [Kinable et al. EJOR 2017]

[O’Neil&Hoffman, ORL2019] [Bogaerdt&de Weerdt, 2019]

[Gillard&Schaus, IJCAI2022] [Rudich et al. CP 2022] 

[Castro et al. 2019-2022] [Horn et al. 2019-2021]

[Bergman, Cire, vH, Hooker, 2011-2016]

[Gillard et al., IJCAI 2020] [vH, MP 2022] 

[Karahalios&vH, 2022] [Coppé et al., CP 2022]

[Andersen et al. CP2007] [Hoda et al. CP2010]

[Bergman, Cire, and/or vH, 2013-2022] 

[Perez&Régin 2015-2018] [Coppé et al., CP 2022] 

[Verhaeghe et al. IJCAI 2018, CPAIOR 2019] 

[Gentzel et al. CP 2020, 2022]

Survey paper: Castro, Cire & Beck [IJOC 2022]

Textbook: Bergman, Cire, vH, Hooker [Springer 2016]



Industrial DD Solver: Hop from Nextmv
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Application: Traveling Salesperson Problem

21

J. Kinable, A. A. Cire, and W.-J. van Hoeve. Hybrid Optimization Methods for Time-Dependent 
Sequencing Problems. European Journal of Operational Research 259(3):887-897, 2017. 

D. Bergman, A. A. Cire, and W.-J. van Hoeve. Lagrangian Bounds from Decision Diagrams. 
Constraints 20(3):346-361, 2015.

A. A. Cire and W.-J. van Hoeve. Multivalued Decision Diagrams for Sequencing Problems. 
Operations Research 61(6): 1411-1428, 2013. 



• Disjunctive scheduling: Sequencing activities on a resource

• Activities

– Processing time: pi

– Release time: ri

– Deadline: di

• Resource

– Nonpreemptive

– Process one activity at a time

• Decision variables

– Start time starti for each activity i

TSP: Special Case of Disjunctive Scheduling

22

Activity 1

Activity 2

Activity 3

0 1 2 3 4



• Precedence relations 𝑎𝑖 ≪ 𝑎𝑗 between two activities

• Sequence-dependent setup times: 𝑠𝑖𝑗
– if 𝑎𝑖 is followed by 𝑎𝑗 we need at least 𝑠𝑖𝑗 time units to set up the machine 

• Various objective functions

– Makespan (=end time of last activity)

– Sum of setup times

– (Weighted) sum of completion times

– (Weighted) tardiness

– number of late jobs

– …

Scheduling: Model Extensions

23



TSP input

• Set of locations 𝑉

• Distance matrix 𝐷𝑖𝑗

Other options:

• Time windows [𝑙𝑖, 𝑢𝑖]

• Precedences 𝑖 ≪ 𝑗

• Visit duration ℎ𝑖 (can be 0)

TSP as Scheduling Problem
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Scheduling format

• Activity 𝑎𝑖 for 𝑖ϵ𝑉

• Sequence-dependent setup 

times 𝐷𝑖𝑗

• Release dates 𝑙𝑖
• Deadlines 𝑢𝑖
• Precedences 𝑎𝑖 ≪ 𝑎𝑗

• Processing time ℎ𝑖
• Objective: Sum of setup times



DDs for Disjunctive Scheduling

Three main considerations:

• Representation

– How to represent solutions of disjunctive scheduling in a DD?

• Construction

– How to construct the DD?

• Inference techniques

– What can we infer using the DD?

25
25



• Every solution can be written as a permutation π

π1, π2 , π3, …, πn :  activity sequencing in the resource

• Schedule is implied by a sequence, e.g.:

Decision Diagram Representation
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𝑠𝑡𝑎𝑟𝑡𝜋𝑖 ≥ 𝑠𝑡𝑎𝑟𝑡𝜋𝑖−1 + 𝑝𝜋𝑖−1 𝑖 = 2,… , 𝑛

• Represent feasible permutations with multi-valued

decision diagram (MDD)
[Cire&vH, OR 2013]



MDD Representation: Example
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Act ri pi di

1 3 4 12

2 0 3 11

3 1 2 10

Path  3 – 2 – 1 : 

6 ≤ start1  ≤ 8

3 ≤ start2  ≤ 5

1 ≤ start3  ≤ 3

3

2

precedence: 3 ≪ 1



MDD-based propagation

Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:

• Alldifferent for the permutation structure

• Earliest start time and latest end time

• Precedence relations

For a given constraint type we maintain specific ‘state information’ 

at each node in the MDD (both from top down and bottom up)

28
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Propagation (cont’d)

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{1,2,3,4,5}

• State information at each node i

– labels on all paths: Ai

– labels on some paths: Si

– earliest starting time: Ei

– latest completion time: Li

• Top down example for arc (u,v)
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…



Alldifferent Propagation
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Alldifferent Propagation
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 Identification of Hall sets (number 
of variables = number of values)
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Propagate Earliest Completion Time
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 Earliest Completion Time:  Eu
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Propagate Earliest Completion Time
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Act ri di pi

1 0 4 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3
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{5}

Propagate Precedence Relations
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 Arc with label j infeasible if

𝑖 ≪ 𝑗 and i is not on some path from r

 Suppose 4 ≪ 5

 Some-paths state Su = {1,2,3}

 Since 4 not in Su, eliminate 5 
from (u,v)

 Similarly: Bottom-up for 𝑗 ≪ 𝑖



• Theorem: Given exact MDD M,  we can deduce all

implied activity precedences in O(n2|M|) time

• The algorithm can also be applied to relaxed MDD to find 

a subset of precedences

– can be stronger than edge-finding, not-first/not-last, etc.

Inference from the MDD

35

[Cire&vH, OR 2013]



Communicate Precedence Relations

1. Provide precedence relations from MDD to CP

– update start/end time variables in CP model

– other inference techniques may utilize them

– may help to guide search

2. Filter the MDD using precedence relations from other (CP) 

techniques

3. In context of MIP, these can be added as linear inequalities

36
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Top-down MDD compilation: Example
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Top-down MDD compilation: Example

38
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Top-down MDD compilation: Example
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precedence: 
3 ≪ 1 π1

π2

π3

2 32 32

3 1
2

3

1 32

1 32

3 1
2

1 32
1

2

Act ri pi di

1 3 4 12

2 0 3 11

3 1 2 10

minimize makespan: lower bound = 7 lower bound = 7 optimum = 9



• MDD propagation implemented in IBM ILOG CPLEX CP 

Optimizer 12.4 (CPO)

– State-of-the-art constraint based scheduling solver

– Uses a portfolio of inference techniques and LP relaxation

– MDD is added as user-defined propagator

• Compare three different variants

– CPO (only use CPO propagation)

– MDD (only use MDD propagation)

– CPO+MDD (use both)

Performance

40



TSP with Time Windows
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Dumas/Ascheuer instances
- 20-60 cities
- max MDD width: 16
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Total Tardiness
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total tardiness total weighted tardiness

CPO

MDD-16

MDD-32
MDD-64

MDD-128

CPO
MDD-16

MDD-32
MDD-64

MDD-128



Sequential Ordering Problem (TSPLIB)
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* solved for 
the first time

*
*

*



• Lagrangian relaxation

– penalize constraint violations by modifying arc weights

• Additive bounding

– incorporate dual information from LP relaxations

– e.g., aggregate reduced costs along path from root to terminal

Strengthening Relaxed Decision Diagrams

45



Extension: Lagrangian bounds

• Observation: MDD bounds can be very loose

– main cause: repetition of activities

• Apply Lagrangian relaxation

– penalize repeated activities; reward unused activities

– shortest path with updated weights

46
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Impact of Lagrangian Relaxation (TSPTW)
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[Bergman, Cire, vH, 2015]



• Case: time-dependent sequencing

– sequence-dependent setup times also depend on position!

– 𝛿𝑖,𝑗
𝑡 = setup time between i and j if i is at position t

• MDD representation

– state-dependent costs

Extension: Additive Bounding
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Activity 1

Activity 2

Activity 3

0 1 2 3 74 5 6

[Kinable, Cire, vH, EJOR 2017]



• Add LP reduced costs to MDD relaxation

• Effectivess depends on the quality of the LP relaxation

• LP can be made stronger for specific problem class

– TD-TSP

– TD-TSP-TW (time windows)

– TD-SOP (precedence constraints)

Additive Bounding: LP + MDD

49

[Picard & Queyranne, 1978] [Vander Wiel and Sahinidis, 1995] 

[Gouveia and Voss, 1995] [Abeledo et al. 2013] [Miranda-Bront et al., 2014]

[Miller,Tucker, Zemlin, 1960] 

[Desrocher & Laporte, 2014]

[Sarin, Sherali, Bhootra, 2005]

[Fischetti &Toth, 1989]



Experimental Setup

• Solvers: IBM ILOG CPLEX and CP Optimizer 12.6.3

– MDD added to CP Optimizer  (Cire & v.H., 2013)

– maximum width 1024

– time limit: 30 minutes

• TD-TSP 38 instances from TSPLIB (n=14-107 jobs)

𝛿𝑖,𝑗
𝑡 = (n-t)*𝛿𝑖,𝑗 [Abeledo et al., 2013]

• TD-TSPTW based on Dumas et al. (n=30, 35, 40), 270 total

• TD-SOP 29 instances from SOP dataset in TSPLib (n=7 to 100)

50



TD-TSP: Performance Plot
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TD-TSPTW: Performance Plot
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max width 1024max width 32

(MIP was unable to find any single integer solution)
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MDD+AB

MDD
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TD-SOP: Performance Plot
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Application: Vehicle Routing

54

Z. Tang and W.-J. van Hoeve. Dual Bounds from Decision Diagram-Based Route Relaxations: 
An Application to Truck-Drone Routing. Transportation Science, to appear. 



• Branch-and-Price with Column Generation is a very effective method for 

solving VRPs

• It uses an extended formulation: binary variable for every possible truck 

route (in principle exponentially many)

Background: Column Generation for VRPs

55

Restricted master problem with subset of routes R 

0 ≤ 𝑥𝑟 ≤ 1

Pricing problem: find improving route

LP-dual values

min (cost of route) – (dual values of route)
s.t. route constraints

capacity constraints
time window constraints
precedence constraints 
etc.

(Often solved with Dynamic Programming)

min (cost of route) – (dual values of route)
s.t. route constraints

capacity constraints
time window constraints
precedence constraints 
etc.

(Often solved with Dynamic Programming)

new route
(add to R)



• Column generation works with restricted set of columns

– no valid lower bound until optimal LP basis is found *

– stability and convergence issues due to degenerate LP solutions

– solving LP as MIP is not sufficient—embed in branch-and-price search

• Alternative: work with relaxed set of columns

– initial relaxation includes columns that are not feasible

– apply an iterative refinement algorithm to eliminate infeasible columns

– use decision diagrams for compact representation and efficiency

– no need for shadow prices or branch-and-price; just “MIP-it” (or use standard branch-

and-bound)

– for VRP, we can use the dynamic program of the pricing problem to compile the DD!

Column ‘elimination’ instead of column generation?

56

[vH, IPCO 2020] 
[vH, Math. Prog. 2021]
[vH, IPCO 2020] 
[vH, Math. Prog. 2021]

* But can use reduced cost information to find approximate LP bound



Case Study: Truck-Drone Routing

57

• One truck + one drone

• Possible legs include:

truck, drone, combined

• Example route duration =

max{1, 0.5+0.5} +

1 +

1 +

max{1+1, 0.5+0.5} +

max{1, 0.5+0.5}

= 6

Depot

6

5
4

3

1

2

7

8

truck speed: 1 unit per edge

drone speed: 0.5 unit per edge



• TSP-D: Traveling Salesperson with a Drone

• Drone speed = α * truck speed (for some fixed α)

• Goal: minimize route duration

• Assumptions:

Definition of TSP-D

58

State of the art: Branch-and-Price
• Master LP: set partitioning model
• Pricing: DP model (with ng-route 

relaxation)

[Roberti & Ruthmair, TS2021]

State of the art: Branch-and-Price
• Master LP: set partitioning model
• Pricing: DP model (with ng-route 

relaxation)

[Roberti & Ruthmair, TS2021]



Dynamic Programming Model for TSP-D
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Set of controls

• truck leg for customer i: Ti

• drone leg: Di

• combined leg: Ci

Set of controls

• truck leg for customer i: Ti

• drone leg: Di

• combined leg: Ci

0

2

13 4

State definition (S, LC, LT, t), where

• S = customers visited so far

• LC = latest location visited by both vehicles

• LT = latest location visited by truck alone

• t = time spent by the truck traveling alone since leaving LC

State definition (S, LC, LT, t), where

• S = customers visited so far

• LC = latest location visited by both vehicles

• LT = latest location visited by truck alone

• t = time spent by the truck traveling alone since leaving LC

Route: T1, T2, D4, C3, C0

({1},0,1,2)

({1,2},0,2,4)

({1,2,4},2,2,0)

({1,2,3,4},3,3,0)

T1

T2

D4

C3

C0

2

21

2

1

1

2

2

max{2+1-4, 0} = 0

1

1

marginal increase 
of total travel time

({ },0,0,0)

({0,1,2,3,4},0,0,0)

[Roberti&Ruthmair, 2021]



• Top-down DD compilation can be defined 

by state transition function of DP model
[Bergman et al. 2016]

– DD nodes are associated with DP states

– DD arc labels are given by allowed controls

– similar to state-transition graph in DP

• Apply the previous DP model for TSP-D
– exact diagram represents all feasible solutions

– shortest path = optimal solution, but exponential size

• How to compile relaxed decision diagram?
– apply route relaxation DP (e.g., ng-route), or

– define new relaxed DD via Column Elimination

Decision Diagram Compilation for TSP-D
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({1},0,1,2)

({1,2},0,2,4)

T1

T2

({ },0,0,0)

...
...

...

({1,2,4},2,2,0)

({1,2,3,4},3,3,0)

D4

C3

C0

({0,1,2,3,4},0,0,0)

...

...



Derive Bound From Constrained Network Flow
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T1

T2

D4

C3

C0

T3

T2

C1

C0

Constrained integer network flow model (NP-hard):

Lagrangian relaxation:
‒ Add dual variable to arc weights

‒ Shortest path in DD (integral)

Lagrangian relaxation:
‒ Add dual variable to arc weights

‒ Shortest path in DD (integral)

LP relaxation:

‒ 0 ≤ 𝑦𝑎 ≤ 1
‒ Use off-the-shelf LP solver

LP relaxation:

‒ 0 ≤ 𝑦𝑎 ≤ 1
‒ Use off-the-shelf LP solver



• Observation: Given a DP model representing a route relaxation R, the 

associated decision diagram DR contains exactly all feasible paths 

corresponding to R

• Let 

– SPLP(R) be the set partitioning LP model with the DP pricing problem

– CFLP(DR) be constrained network flow LP defined over D

– LR(DR) be the Lagrangian relaxation of the constrained network flow defined over D

Equivalence of Relaxation Bounds
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Theorem: SPLP(R), CFLP(DR), and LR(DR) have the same optimal 

objective value

Theorem: SPLP(R), CFLP(DR), and LR(DR) have the same optimal 

objective value



• Resolve conflicts along solution paths by refining the DD

Going Beyond the ng-Route Bound

63

Type 1: objective function Type 2: repeated visits

Duration = 7 Path length = 6 Customer 3 repeated



Overall Framework

64

Construct initial DD-based route relaxation

Compute lower bound (LP flow or Lagrangian)

Refine conflicts along solution paths



• Evaluate two variants

– DD-Flow: lower bound from constrained network flow LP

– DD-Lagrangian: lower bound from Lagrangian

– both apply iterative refinement based on conflicts

• Comparison with state-of-the-art bound for TSP-D

– column generation model from [Roberti&Ruthmair, TS2021]

– set partitioning LP using ng-route relaxation

• Benchmark

– random instance generation [Poikonen et al., 2019]

• Upper bound

– best solution found by CP in 1h [Tang et al, CPAIOR2019]

Experimental Evaluation on TSP-D

65



Optimality gap improvement over time
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DD-Flow
DD-Lagrangian
ng-route

DD-Flow
DD-Lagrangian
ng-route



Optimality gap for varying problem sizes
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DD-Flow DD-Lagrangianng-route

(Time limit for DD methods is the ng-route solving time)



Optimality gap for larger instances

68

DD-Flow DD-LagrangianMath Prog

• Column generation does not scale 

beyond 30 locations

• We therefore compare to LP relaxation 

of MIP model proposed by 

[Roberti&Ruthmair, 2019]



• Decision Diagrams provide a new way to represent VRPs

• Relaxed DDs trade off size (memory) for strength of bound 

– Can be embedded in existing solvers, e.g., constraint programming 

– Or can be the basis of stand-alone solution method, e.g., column 

elimination

• Competitive results on variants of TSP and TSP+drone routing

Conclusions

69

DDs for general Capacitated VRPs will be presented on Thursday:

Karahalios and vH: Column Elimination for Capacitated Vehicle Routing 

Problems, CPAIOR 2023

DDs for general Capacitated VRPs will be presented on Thursday:
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Problems, CPAIOR 2023
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